
Unified Modeling
Language

Eran Kampf 2005

2

Agenda
What is UML?

General definition
Goals
Some background
Why use UML?

UML Diagrams
Conclusions
Bibliography

3

What is UML?

4

What is UML?

UML – Unified Modeling Language
Standard language for specifying, visualizing,
constructing and documenting the artifacts of
software systems.
Collection of best engineering practices that
have proven successful in modeling large
and complex systems.

5

Goals-What is UML

Provide users with a ready-to-use, expressive visual modeling
language so they can develop and exchange meaningful models.
Provide extensibility and specialization mechanisms to extend the
core concepts.
Be independent of particular programming languages and
development processes.
Provide a formal basis for understanding the modeling language.
Encourage the growth of the OO tools market.
Support higher-level development concepts such as collaborations,
frameworks, patterns and components.
Integrate best practices.

6

Why use UML?

Helps to reduce cost and time-to-market.
Helps managing a complex project
architecture.
Helps to convey ideas between
developers\designers\etc.

7

Background

1970 – Object-oriented modeling languages began to
appear.
1996 – Release of UML 0.9 by by Grady Booch, Jim
Rumbaugh of Rational Software Corporation, Ivar
Jacobson of Objectory company.
1996 – Release of UML 1.0 by Digital Equipment, HP, I-
Logix, IntelliCorp, IBM, ICON, MCI, Microsoft, Oracle,
Rational, TI and Unisys.
1997 – Release of UML 1.1 by IBM, ObjecTime,
Platinum, Ptech, Taskon, Reich and Softeam
2001 – Work on UML 2.0 specifications.

8

UML Diagrams

9

UML Diagrams

10

con –UML Diagrams

Structural diagrams – Used to describe
the building blocks of the system –
features that do not change with time.
These diagrams answer the question –
What's there?
Behavioral diagrams – Used to show
how the system evolves over time
(responds to requests, events, etc.)

11

Use Case Diagrams

Describes what a system does from the standpoint of an
external observer.
Emphasis on what a system does rather then how.
Scenario – an example of what happens when someone
interacts with the system.
Actor – A user or another system that interacts with the
modeled system.
A use case diagram describes the relationships between
actors and scenarios.
Provides system requirements from the user’s point of
view.

12

cont.–Use Case Diagrams

UML defines 3 kinds of associations:
Association – defines a relationship between an
actor and a use case.
Extend - defines that instances of a use case may be
augmented with some additional behavior defined in
an extending use case.
Uses - defines that a use case uses a behavior
defined in another use case.

13

Use Case Example

14

Class Diagrams

Displays objects structure, contents and
relationships.
Class diagrams are static – display what
interacts but not what happens when
interaction occurs.

15

cont.–Class Diagrams

Classes are represented by a rectangle divided to three
parts: class name, attributes and operations.
Attributes are written as:
visibility name [multiplicity] : type-expression = initial-value
Operations are written as:
visibility name (parameter-list) : return type-expression
Visibility is written as:
+ public
protected
- private

16

cont.–Class Diagrams

17

–Class Diagrams
Relationships

Class Diagrams have 3 kinds of
relationships:

Association – Two classes are
associated if one class has to know
about the other.
Aggregation – An association in
which one class belongs to a collection
in the other.
Generalization – An inheritance link
indicating one class is a base class of
the other.
Dependency – A labeled dependency
between classes (such as friend
classes, instaciation)

18

Class Diagram Example

19

Interaction Diagrams

Used to model the behavior of several objects in
a use case.
Demonstrates collaboration between the
different objects.
Sequence Diagram displays the time sequence
of the objects participating in the interaction.
Collaboration Diagram displays an interaction
organized around the objects and their links to
one another.

20

Sequence Diagram

21

Collaboration Diagram

22

State Diagram

State diagrams are used to describe
the behavior of a system.
State diagrams describe all of the
possible states of an object as events
occur.
A state diagram begins with an initial
object state (when the object is
created).
The state’s activity section depicts
what activities the object will be doing
in this state.
Conditions based on the activities can
determine what the next state the
object transitions to.

23

State Diagram Example
An Order object state diagram:

24

Activity Diagram

Displays a workflow behavior of a system.
Somewhat similar to a state diagram

Activities are states that represent the
performance of actions or subactivities.
Transitions are triggered by the completion of
actions or subactivities.

25

Activity Diagram

Activity diagram notations:
Swimlane – Used to organize responsibility for actions and
subactivities. Often corresponds to organizational units in a
business model.
Fork - Splits an incoming transition into several concurrent
outgoing transitions. All of the transitions fire together.
Join - Merges transitions from concurrent regions into a single
outgoing transition. All the transitions fire together.
Decision – A state node that represents a decision. Each
transition from this node depends on a Boolean condition.

26

Activity Diagram
Leave request scenario

27

Activity Diagram
University course scheduling scenario

28

Implementation Diagrams

show aspects of physical implementation:
Structure of components.
Run-time deployment systems.

Two diagram types:
Component diagram – show the structure of
components, including the classifiers that specify
them and the artifacts that implement them.
Deployment diagram - show the structure of the
nodes on which the components are deployed.

These two diagrams are usually drawn together.

29

Implementation Diagrams
Notations

Node
A physical object that represents a processing
resource.
generally, having at least a memory and often
processing capability as well.

Component
represents a modular, deployable, and replaceable
part of a system that encapsulates implementation
and exposes a set of interfaces.

30

Implementation Diagrams

31

UML and C++

UML supports all the key concepts of OOP
and C++.
There are UML to C++ code generators on
the market (and reverse engineering code
to UML)

32

Conclusions

UML provides a common ‘language’ for
describing software projects (Not just for
developers).
Helps to define and understand the
system.
Increases efficiency and thus reduces
costs and time-to-market.

33

The End

34

בי ב ל יוג רפיה
UML 2 for dummies – 2003.
Kennesaw State University - CSIS 4650 - Spring 2001.
By David Braun, Jeff Sivils, Alex Shapiro, Jerry
Versteegh
http://pigseye.kennesaw.edu/~dbraun/csis4650/A&D/U
ML_tutorial/index.htm
OMG foundation – Official page for UML
http://www.uml.org/
Borland’s UML tutorial
http://bdn.borland.com/article/0,1410,31863,00.html
Sun Microsystems Web Learning Center - WPB-120:
Object-Oriented Programming with Java(TM)
Technology Bundle.

